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An exact expression in the form of a double integral is obtained for the ratio of the intensity of double 
scattering to that of single scattering 1(2)/1(1) for a diffractometer sample of an amorphous material. 
By expressing the double scattering in terms of the independent scattering of the atoms, and approx- 
imating this quantity by an expression involving two parameters, the double integral is evaluated and 
tabulated as a function of 20 and the two parameters. With these tabulated values, the ratio 1(2)/1(1) 
for unmodified scattering only, or for both unmodified and modified scattering, can be obtained for 
a sample of any composition. For the unmodified scattering from vitreous SiO2 using Rh Ke radiation, 
the value of 1(2)/1(1) is about 0-08 in the range 20= 90 ° to 20-= 180 °. In general the second order scatter- 
ing is large enough to require a correction. 

In the scattering of X-rays by amorphous samples, the 
main contribution to the intensity arriving at the point 
of observation is due to single scattering of the primary 
beam by each volume element dV1. There is also a 
contribution at the point of observation due to the 
scattered intensity from dV1 being scattered again by 
another volume element dV2 in the sample. In addition 
to this double scattering process, there can, of course, 
be a series of higher order scattering processes. We 
shall consider here only the double scattering process 
since it represents the major part of the multiple scat- 
tering. 

We consider a flat faced diffractometer sample 
whose horizontal surface is represented by OO' in 
Fig. 1. The power in the primary beam is given by 
Po=IoAo, where A0 is the cross-sectional area. The 
primary beam and the direction of measurement each 
make an angle 0 with the sample surface. It is conve- 
nient to introduce the term 'unit of composition', 
where for example in vitreous silica the obvious unit 
of composition would be one silicon and two oxygen 
atoms. Let n be the number of units of composition 
per unit volume, and let J(201) be the first order inten- 
sity in electron units per unit of composition for scat- 
tering at an angle 201. We first neglect the effect of 
absorption and the polarization factor. 

* This work was supported principally by the Joint Services 
Electronics Program [Contract DA 36-039-AMC-03200(E)]. 
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Fig. 1. Geometry of the double scattering process in a dif- 

fractometer sample of an amorphous material. 

Let dIr be the intensity at distance r from the vol- 
ume element dVx due to scattering of the primary 
beam by dV~. 

e 4 
dIr= Io m2c4r2 J(201)nAods . 

Let dI(2) be the intensity at the point of observation 
at distance R from the sample, due to the scattering of 
the intensity dIr by the volume element dV2. 

e 4 
dI(2)=dIr m2c4R---------- Y J(202)ndV2 . 

In terms of a small solid angle dr2 centered on the line 
r, we express the second volume element by dV2= 
r2dt'2dr, where d O = c o s  e dedg. Combining the pre- 
vious equations we obtain 

( e4 ] 2 n  2 
dI(2) = Po \ m2c4 ] - ~  J(201)J(202) cos t ded~odsdr . (1) 

The angle t which is shown in Fig. 1 is the angle 
which the direction r makes above the horizontal plane 
XY. For positive values of e, the path length in the 
sample is 2 s + r ( 1 -  sin e/sin 0). In the integrations aris- 
ing from equation (1), r goes from r = 0  to r=s sin 0/ 
sin e, and assuming a thick sample, s goes from zero to 
infinity. Allowing now for absorption, the two inte- 
grals are readily evaluated. 

l °° l=sin °/si""exp [-lu{2s+r(1-sin e/sin 0)}1 drds 
s=0 dr=0 

sin 0 
= 2/z~(sin 0 +  sin e) " (2) 

For negative values of e, the integrations for both r 
and s are from zero to infinity. The result is again given 
by equation (2), if we replace sin e by its magnitude 
[sin el. 

If an unpolarized beam is scattered first through an 
angle 201, and the scattered beam then scattered 
through an angle 202, so that the final direction makes 
an angle 20 with the original primary beam, the polar- 
ization factor is expressed by 

A C 2 1 - 1  
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(PF) = [cos 2 201 + COS 2 202 
+ (cos 201 cos 202-cos 20)2]/2. (3) 

Introduce the abbreviationspl = cos 201 and Pz = cos 202. 
From the spherical triangles involved in Fig. 1, 

Pl = cos 201 = cos 0 cos ~0 cos e - s i n  0 sin e ,  

Pz = cos 202 = cos 0 cos ~0 cos e + sin 0 sin e .  (4) 

Since the intensities of first order scattering can equally 
well be represented as functions of pl and p2, we shall 
now replace J(201) and J(202) by J(PO and J(P2). 
Combining equations (1) and (2), and adding the 
polarization factor, the intensity I(2) is given by 

I(2)=P0--~2--b- 7 R2 2H z ~=-~zd,=-n/2 

J(pOJ(p2) (PF) cos eded~o 
× (5) 

sin 0+  Isin el 

In changing from a value e to a value - e ,  there is no 
change in the integrand of equation (5) except that p~ 
and P2 are interchanged. Hence we can limit the inte- 
gration with respect to de to the range e = 0 to e = re/2 
and multiply the expression by 2. There is no change 
in the integrand of equation (5) on replacing ~0 by -~0, 
and we can again multiply by 2 and restrict the inte- 
gration to the range ~0 = 0 to ~0 = n. In changing from 
an angle ~0 to the angle n-~0, cos ~0 is replaced by 
- c o s  ~0. From equation (4), it follows that p~ changes 
to -P2 and P2 changes to - P l .  There is no change in 
the polarization factor (PF), and hence by adding 
J ( -p l ) J ( -p2 )  in the integrand, the integration over 
fp can be reduced to the range rp = 0 to fp = re/2. 

e4 ~2 n2 2sinOInl2Inl2 
1(2) = Po \ mZe4 / .R z /./2 d0 d0 

[J(POJ(pz) + J( -POJ(-pz)]  
x sin 0 +  sin e - -  (PF) cos eded~o. (6) 

The ratio n/lz is conveniently expressed by n/H= 
N~ _,r A~lzi(m) where N is the Avogadro number, the 

i 

sum is over the unit of composition, and Ai and/z~(m) 
are the atomic weights and mass absorption coefficients 
of the atoms. 

For  an unpolarized primary beam, the correspond- 
ing first order intensity I(1) is given by 

( e 4 )  1 ( l + c ° s 2 2 0 ) j ( 2 0 )  n 
I(1)---P0 ~ - ~ - T  2 -~--. (7) 

Dividing equation (6) by equation (7), we obtain the 
ratio 

I(2) _ (  e 4 ) 8Ns in0  
I(1) m--5~c 4 (1 +cos  2 20)J(20)S Atlz,(m) 

i 

x l ~121 "12 [J(POJ(P2)+J(-POJ(-P2)] 
do do sf~ U4 ~ ; 

× (PF) cos eded~o. (8) 

Since the integrations in equation (8) result in an aver- 
aging of J(pOJ(p2) over a range of angles, it is a good 
enough approximation for amorphous samples to 
replace J(p) by the independent scattering. In doing 
this, we use either Z ' f  2 or Z" [f2.Jr_ i(M)]i depending on 

i i 
whether the measurements are to include only the un- 
modified intensity or both the unmodified and modi- 
fied components. 

It is convenient to have approximate numerical 
values from equation (8) without needing to carry out 
the integrations for each sample. For  this purpose we 
can use the approximate representation 

( 1 - q  ) 
J(p) = B q+ l + b sin z 0  (9) 

where B=L" Z 2. With this representation, the integra- 
l 

tions in (8) have been carried out for a series of 
values of 20, q, and b to give the values of the function 
Q (20, q, b) which are recorded in Table 1. By means of 
the function Q (20, q, b), the intensity ratio is expressed 
in the simple form 

I(2) BZQ(ZO, q,b) 
I(1) - J(20) Z" A~l.ti(m) " (10) 

i 
To use equation (10), we plot the independent scat- 

tering curve J(p) against sin 0, using either Z ' f  2 or 
i 

~r[f2+i(M)] t depending on whether the experiment 
i 
includes only the unmodified scattering or both the 

Table 1. Values of Q (20, q, b)× 104 

q=0.00 

20 b=10 b=20 b=40 b=60 b=80 b=100 
30 192 104 50.8 31-3 21.6 16-0 
60 196 87 33"7 18.3 11.7 8.1 
90 164 64 22.2 11.5 7-1 4-8 

120 124 45 14.9 7-6 4-6 3.2 
150 103 36 11-9 6.0 3-7 2-5 
180 98 34 11.1 5-6 3.4 2.3 

q=0.05 
30 219 126 68.1 46.2 34.9 28-1 
60 238 121 59.1 39.4 30.1 24-7 
90 218 105 51.9 35.7 28.1 23-7 

120 179 86 43-9 31-1 25-0 21.4 
150 156 75 39.4 28-3 23.0 19.8 
180 150 73 38-1 27-5 22.4 19.4 

q=0.10 
30 250 154 92 68 55 47 
60 287 163 93 70 58 51 
90 279 155 92 71 61 54 

120 241 136 83 66 57 51 
150 216 123 77 61 53 48 
180 209 120 75 60 52 47 

q=0.20 
30 326 225 157 130 115 106 
60 402 268 188 159 144 134 
90 423 283 204 175 160 151 

120 386 263 193 168 154 146 
150 355 244 182 158 146 138 
180 347 239 178 156 143 136 
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unmodified and modified components. An approx- 
imate fit to this curve is then obtained by a proper 
choice of the parameters q and b in equation (9). When 
only unmodified scattering is being considered, the 
best fit is usually obtained with q=0.0,  but when the 
interest is in both the unmodified and modified intensi- 
ties, it is necessary to use a value ofq other than zero. An 
exact fit is of course not to be expected, but if the depart- 
ures are small and equally positive and negative, the 
errors are largely cancelled by the averaging which is 
involved. Suitable values of q and b having been deter- 
mined, the values of Q(20,q,b) are obtained by inter- 
polation from Table 1. With the use of equation (10), 
the ratio I(2)/I(1) can be plotted over the desired range 
of 20. 

As an illustration of the magnitude of second order 
scattering, we can take the example of vitreous SiO2 

with Rh Ka radiation and an experimental technique 
which measures only the unmodified intensity (Warren 
& Mavel, 1965). From equation (8) we obtain for 
1(2)/1(1) a value of about 0.08 in the range 20=90 ° to 
20= 180 ° . Except for samples with high absorption 
coefficients, the second order scattering is in general 
large enough to require a correction. 

This work was done in part at the Computation 
Center at the Massachusetts Institute of Technology, 
Cambridge. One of us (RLM) is a Raytheon Graduate 
Program Member at M.I.T. 
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Previous theoretical work on diffraction by chrysotile has not revealed the particular regions of the 
fibrils from which particular diffraction maxima originate. Difficulties in localizing these regions are 
overcome by a Fourier-transform method, and the results are applied to evaluating electron screening 
functions across the width of such fibrils on the basis of simple kinematical theory. The results show 
that under appropriate conditions electron micrographs of chrysotile fibrils may be expected to simulate 
hollow tubes even though the centres of the fibrils are filled either with amorphous material or with 
oriented ribbons of serpentine material. 

Introduction 

Electron microscopy provided the first evidence that 
chrysotile has a tubular structure (Turkevitch & Hillier, 
1949; Bates, Sand & Mink, 1950). The evidence for 
this conclusion was based on the fact that electron 
microscope images of single chrysotile fibres frequently 
showed a central light band running along the length 
of the fibre with a darker band at each side. The 

* Present address: Department of Geology & Mineralogy, 
Oxford, England. 

Fig. 1. The var iat ion in mater ial  thickness across a section of  a 
thick-walled hol low cylinder.  

boundaries between the light and dark bands are often 
remarkably sharp. This appearance has always been 
attributed to shielding of the electron beam by the 
fibre, this shielding being assumed to be a function of 
the material thickness traversed by the beam. Fig. 1, 
showing the variations in thickness across the section 
of a hollow cylinder, was used to demonstrate the 
theory by Noll & Kircher (1951). These workers ex- 
tended the observations to stereoscopic electron micro- 
graphs of synthetic chrysotile, which gave a particularly 
convincing appearance of hollowness. Subsequent 
analysis of X-ray diffraction patterns of chrysotile 
showed these to be explicable in terms of cylindrically 
curved layers with a radius of the same order as that 
of the tubes deduced from electron microscopy, the 
layers being stacked together in numbers corresponding 
to the apparent wall-thicknesses of such tubes (Whit- 
taker, 1953, 1956, 1957; Jagodzinski & Kunze, 1954; 
Jagodzinski, 1961). It has also been shown (Whittaker, 

A (2 21 - 1" 


